Freak waves under the action of wind: experiments and simulations
The freak wave formation due to the dispersive focusing mechanism is investigated experimentally without wind and in presence of wind. An asymmetric behaviour between the focusing and defocusing stages is found when the wind is blowing over the mechanically generated gravity wave group. This feature corresponds physically to the sustain of the freak wave mechanism on longer periods of time. Furthermore, a weak amplification of the freak wave and a shift in the downstream direction of the point where the waves merge are observed. The experimental results suggest that the Jeffreys' sheltering mechanism could play a key role in the coherence of the group of the freak wave. Hence, the Jeffreys' sheltering theory is introduced in a fully nonlinear model. The results of the numerical simulations confirm that the duration of the freak wave event increases with the wind velocity. (C) 2006 Elsevier SAS. All rights reserved.
Accès au document
Lien externe vers le document: |