Analyse des processus sedimentaires recents dans l'eventail profond du Danube (mer Noire)
This study is focusing on the architecture and recent sedimentary evolution of the Danube channel, the youngest channel-levee system in the Danube deep-sea fan. The study was conducted as part of the BlaSON French-Romanian Project, and combined high-resolution seismic-reflection profiles and chirp profiles with multibeam bathymetry and piston cores. This data set was acquired in 1998 during a joint survey IFREMER-GeoEcoMar of the north-western Black Sea. Previous seismic and acoustic data were also used.
The Danube deep-sea fan is a large passive-margin mud-rich fan. Like the other systems of this type (Amazon fan, Mississippi fan or Indus fan) the Danube fan consists of stacked channel-levee systems intercalated with mass-transport deposits. Seismic and sedimentary facies in the Danube fan are similar to those identified in most of the mud-rich systems. Nevertheless, the Danube fan is distinguished by a specific feature: its development in a freshwater environment. This is due to the peculiar water-level history of the Black Sea controlled by the link to the Mediterranean through the Strait of Bosphorus and the Sea of Marmara. This connexion was successively interrupted (during sea level lowstands) and re-established (when the sea level was rising above the Bosphorus). Temporary absence of marine water influx during lowstands together with large freshwater inputs from the Danube and other major rivers changed the Black Sea into a freshwater lake during times of fan activity. This peculiarity possibly favourised the development of hyperpycnal flow at the Danube mouth and the initiation of turbidity currents in the deep-sea fan.
The Danube channel is directly connected to the large shelf-indenting Danube canyon (also known as Viteaz canyon). The Danube canyon is deeply incised into the shelf margin for 26 km landward of the shelfbreak. During lowstands this canyon acted as the most important path for sediment supply to the deep sea in this part of the continental margin. It consists of a main trough with steep flanks, and a meandering thalweg cut into the flat canyon floor, attesting for the development of the canyon by erosion in the entrenched axial thalweg. Sections with specific morphology, orientation and gradient identified along the canyon, are interpreted as phases of landward expansion of the canyon. Internal structure of the canyon shows several erosional surfaces, which indicate that the present morphology of the canyon is the result of its polyphasic evolution. Instability in the zone of the canyon is related to the important sediment supply at the Danube mouth, to the presence of the gas in the surficial sediment, and possibly under a structural control.
The upper part of the Danube channel (between the Danube canyon and ~1400 m depth) consists in a single leveed-channel that has undergone significant overbank deposition, as attested by the well-developed levees. The levees are strongly asymmetrical, being higher and wider on the right-hand side looking downstream. This type of asymmetry is rather common in deep-sea fans, and is generally attributed to the Coriolis effect (Menard, 1955). The channel is slightly sinuous, partially filled and incised by an entrenched thalweg, connected to the axial thalweg of the Danube canyon. Detailed seismic investigation inside the channel trough documented several depositional phases within the channel fill, separated by erosional surfaces. These surfaces are associated with distinct terraces identified on the multibeam bathymetry, that can be followed downward along the main trough axis. The valley fill deposits (where not removed by the subsequent erosional event) show an axial HAR (High Amplitude Reflections) seismic facies with lateral lower amplitude continuous reflections consisting in a levee facies, as proved by sampling. This indicates that filling up was associated with flow within the channel, and not with interruption of fan activity.
On the middle slope below 1400 m, this single channel bifurcates through repeated avulsions. As a result, several highly meandering channels developed. The onlap relationships between these channels indicate that only one channel was active at a time. Each phase of avulsion resulted in a depositional unit consisting in a basal unchannelized lobe defined as High Amplitude Reflection Packets (HARP, Flood et al., 1991) that underlies a channel-levee system. The deposition of HARPs was associated with the readjustment of the longitudinal profile of the channel after the breaching of a levee, which resulted in remobilization of upslope channel deposits and eroded levees. When this adjustment was complete, erosion ceased and levees began to develop above the HARPs (Pirmez et al., 1997). All the identified phases of avulsion followed the same pattern: (1) breaching of the lower and narrower left levee; (2) building of a unit of High Amplitude Reflector Packets (HARP) basinward of the bifurcation point by the unchannelized flow, while the former channel was abandoned; and (3) initiation of a new meandering leveed channel. The northward migration of the resulting units through repeated bifurcations is influenced by the asymmetry between levees (hence by the Coriolis effect), and confined between the high levees of the initial phase of the Danube channel (to the south) and the steep relief of the Dniepr fan (to the north).
Structure of the fan valley fill indicate that the erosional surfaces inside the upper channel could be formed in response of successive avulsions, by the adjustment of the longitudinal profile of the channel following the breaching of a levee wall. Sediments removed by erosion formed the HARP lobes basinward of the avulsion point. When this adjustment was complete, a channel-levee system developed downward of the bifurcation, overlying the HARPs, but also upward of this point, as a confined channel-levee system inside the erosional trough of the fan valley.
Fluvial incisions identified on the continental shelf, together with the coastline location during the last active period of the Danube channel, indicated that the paleo-Danube was directed towards the head of the Danube canyon. Paleo-Danube mouth was fairly close (ca. 10 km) to the Danube canyon, supplying sediment to the Danube channel. Furthermore, hyperpycnal flow probably prevailed in the freshwater environment that characterized the Black Sea during times of fan activity. These conditions would have enabled the development of a quasi-continuous river-canyon-deep-sea fan system, ensuring the effective transfer of the sediment between the coastal zone and the deep sea.
Accès au document
Lien externe vers le document: |