Chers partenaires et clients, venez découvrir notre nouveau site institutionnel

Altération de la physiologie des poissons exposés à des hydrocarbures aromatiques polycycliques (HAP). Comportement et reproduction

Polycyclic aromatic hydrocarbons (PAHs) are persistent organic pollutants (POPs) which are found in complex mixtures in the environment including aquatic ecosystems. They adsorb on particles, accumulate in sediment and in the first link of the food web. The aim of this study was to measure long term effects of PAH scontamination on a vertebrate model: the zebrafish. In a first study, embryos were exposed on natural sediment spiked with 3 individual PAH (phenanthrene, pyrene and benzo[a]pyrene) during the first four days of their development. In a second study, to evaluate the consequences of long-term chronic exposure to PAHs, zebrafish were exposed, from their first meal (5 days post fertilisation) until they became reproducing adults, to diets spiked with three PAHs fractions at environmentally relevant concentrations (0.3X, 1X and 3X; with the 1X concentration being in the range of 4.6-6.7 μg.g-1 for total quantified PAHs). The fractions used were representative of PAHs of pyrolytic (PY) origin or of two different oils of differing compositions (a heavy fuel (HO) and a light crude oil (LO)). Long term effects on growth, survival, reproduction and behavior were evaluated at different ages. Effects were observed at molecule, tissue, organ and individual scales. In general, for contaminated fish, growth was reduced, larval survival decreased in HO, and reproduction was strongly impaired at hormonal, tissue and phenotypic levels, and behavioral responses were lethargic or hyperactive depending on fractions and stages. Sediment exposure still revealed visible effects when fish were 6 month old. These results hereby showed significant late effects, especially in behavioral responses after an early exposure, including in larvae issued from contaminated fish. In spiked diets contaminated fish, we observed a gradation of effects. Combining all functions, we established of hierarchy in toxicity in the studied fractions: PY < LO ≈ HO. Finally, our results gathered at a multiscale from molecule, to tissue and individuals, indicate that PAH mixtures of different compositions, representative of situations encountered in the wild, can promote lethal and sublethal effects which are likely to be detrimental for fish survival and recruitment into future generations

Accès au document

Métadonnées du document