

Spatial altimetry to assess hydropower potential of the Congo basin

C

| ∓ 🖊 📂 💳

Office International de l'Eau

- 1. CONTEXT AND PROJECT BACKGROUND
- 2. INTRODUCTION
- 3. METHODOLOGY
- 4. DISCUSSIONS
- 5. CONCLUSION

CONTEXT AND PROJECT BACKGROUND

CNR

• SPATIAL HYDROLOGY WORKING GROUP

- -Objective:
 - develop operational applications using satellite data as input, and especially spatial altimetry, in context with few data
 - prepare French-US SWOT program (Surface Water Ocean Topography), a satellite that will be launched in 2021
- -The Congo Basin is defined as first pilot basin
- -AFD as funding agency

-CNR as member of the 8 French entities involved in the project

CONTEXT AND PROJECT BACKGROUND

• PRINCIPLES OF SPATIAL ALTIMETRY

- -Altitude measurement of water bodies by satellites
- Intersections between rivers and satellite tracks are called virtual stations
- -Accuracy around 10 cm

INTRODUCTION – COMPANIES' PROFILES

• CICOS

CICOS (International Commission for Congo-Oubangui-Sangha basin)		
Creation date	1999	
Member States	Rep. of Cameroon (1999) Central African Rep. (1999) Rep. of Congo (1999) Dem. Rep. of Congo (1999) Rep. of Angola (2007 as observer, 2015 as member) Rep. of Gabon (2010)	
Missions :	1999 : inland navigation promotion 2007 : integrated water resources management	

INTRODUCTION – COMPANIES' PROFILES

CNR

 CNR, holder of the Rhone River concession in South-East of France with three historical missions:

(3000MW)

- CNR offers technical support in the fields of hydropower, navigation and river engineering
- CNR, member of French SWOT working group on space altimetry

ш	CENISSIAT CENISSIAT	Noc	
NOHN	SEVERAL SEVEREL	Vac	
EHAUT		100	\sim
RITORIAL	SWORKS LAVOURS BELLEY MS-VIRGINAN	100	K aquar
TON TER	K. DE VISINE ERI-CORDON BREGNER- ANFAMELIK CORDON	Contra	35
DIREC	MULIDOS SAULT- MILADAEU BRENAZ	O RIBIN	
180 MW	Bourg-lès- Valence	420 MW	Génissiat
192 MW	Beauchastel	45 MW	Seyssel
215 MW	Logis Neuf	90 MW	hautagne
295 MW	Montélimar	90 MW	Belley
348 MW	Donzère- Mondragon	70 MW	Brégnier- Cordon

156 MW

178 MW

210 MW

Caderousse

Avignon

Vallabrèques

45 MW

84 MW

72 MW

160 MW

120 MW

INTRODUCTION – CONTEXT AND OBJECTIVE

• CICOS AND HYDROPOWER

- -SDAGE: CICOS has adopted a master plan for water development and management ("SDAGE")
- -Program of measures 2016-2020:
 - Identification of projects within the framework of the "SDAGE"
 - Three strategic objectives: economic development of the region, social equity and preservation of environment
- Design and implementation of micro and pico-hydropower plants associated to drinking water supply is part of the main projects identified

INTRODUCTION – CONTEXT AND OBJECTIVE

• **OBJECTIVES**

- Assess hydropower potential of river sections on the Congo and Ogooué basins
- –Use spatial altimetry data and study its added-value
- -Subsequently identify sites to be equipped, in cooperation with states Rural Electrification Agencies

METHODOLOGY – CASE STUDIES

• CATCHMENTS' MAIN CHARACTERISTICS

River	Congo	Ogooue
Catchm. Size	3.8 M km ²	224,000 km²
Mean annual flow	41,000 m ³ /s at Kinshasa / Brazzaville ¹	4,700 m ³ /s at Lambarene ²

1. Source: CICOS

2. Source: GRDC website

METHODOLOGY – DATA

• GAUGING STATIONS

HYDROELECTRIC POTENTIAL STUDY ON THE CONGO BASIN

Location map of gauging stations

Туре	Hydrological data
Source (Congo River)	Runoff data observed and reconstructed ¹
Comments	82 stations Period: 1948-2012 Time step: Daily
Source (Ogooué River)	GRDC database
Comments	18 stations Period: varying Time step: Annual mean

1. Runoff reconstructed in a previous project (source CICOS / BRLi)

CNR

HYDROELECTRIC POTENTIAL STUDY ON THE CONGO BASIN

Location map of virtual station

METHODOLOGY – DATA

VIRTUAL STATIONS

METHODOLOGY – DATA

• RAINFALL AND DEM

HYDROELECTRIC POTENTIAL STUDY ON THE CONGO BASIN

ANNUAL RAINFALL CRU (Climate Research Unit) - 0.5° GRID

Туре	Rainfall
Source	CRU observed rainfall
Comments	Resolution: 0.5° grid Period: 1901-2016 Time step: Monthly

Туре	DEM
Source	HydroSHEDS
Comments	Resolution: 30" (926m at the Equator)

METHODOLOGY – IN A NUTSHELL

• 3 MAJOR STEPS

1. Calculate water head between two consecutive virtual stations

 $h = H_{US} - H_{DS}$

2. Extrapolate discharge at virtual stations (Q_{us})

3. Calculate linear power potential for each river section (MW/km)

METHODOLOGY – STEP BY STEP

• STEP 1: CALCULATE WATER HEAD BETWEEN TWO CONSECUTIVE VIRTUAL STATIONS

- -Preprocessing of virtual stations datasets to:
 - Identify and delete outliers
 - Select relevant subset of stations (number of data, distance to other stations...)
 - Accurately locate virtual stations on the DEM
- -Calculation of average water levels for each virtual station
- -Calculate catchment area at each virtual station

METHODOLOGY – STEP BY STEP

• STEP 2: EXTRAPOLATE DISCHARGE AT VIRTUAL STATIONS

- -Calculation of mean annual discharge using observed or reconstructed daily flow for 82 gauging stations
- -Identification of a reference in-situ station for each virtual station
- -Extrapolation of virtual stations mean discharge (Q) using:
 - Rainfall mean annual data (P)
 - Catchment sizes (S) • Catchment sizes (S) $V_{VS} = \overline{Q_{hydro}} \times \frac{S_{VS}}{S_{hydro}} \times \frac{P_{VS}}{P_{hydro}}$ Catchment River • Virtual station • In-situ station

METHODOLOGY – STEP BY STEP

• STEP 3: CALCULATE LINEAR POWER POTENTIAL FOR EACH RIVER SECTION (MW/KM)

- -Assessment of power potential: $P \approx 8$. h. Q
 - h average head between two consecutive virtual stations
 - Q mean annual discharge at the upstream station
- Transformation into linear power potential (LPP) by dividing P by the length L of the river section between the two corresponding consecutive virtual stations
 - LPP = P / L

METHODOLOGY – RESULTS

• IDENTIFICATION OF RIVER SECTIONS WITH HIGH POTENTIAL (LPP)

-Sections with high potential

- Sections with high flow (Congo, Ubangui, Kasai)
- Sections with steep slopes (Congo upstream Kisangani)

-Sections with low potential

- Central basin
- Smallest rivers

DISCUSSIONS – ABOUT THE METHOD

ADVANTAGES

- -Method identifying river sections with the most interesting densities of hydropower potential
- -Method based on innovative data
- Method replicable for other catchments with similar characteristics in terms of river width and catchment size

DRAWBACKS

- The technically and economically feasible potential has to be derived from the linear power potential
- The identification of a site requires additional information: proximity of energy consumption points, affordable electricity price, technical information, etc.

DISCUSSIONS – ABOUT SPATIAL ALTIMETRY

• SPATIAL ALTIMETRY: CURRENT LIMITATIONS

- The density of virtual stations varies on the basins:
 - Over-representation in some areas (largest rivers, Central basin)
 - Under-representation in other areas (mountainous areas and northern end of the basin)
- Spatial altimetry is not spatialized
 - The use of a DEM is a good alternative for a full coverage of the basin and the choice of relevant river sections

Location map of virtual station

DISCUSSIONS – ABOUT SPATIAL ALTIMETRY

• SPATIAL ALTIMETRY: SWOT PERSPECTIVES

- -SWOT will provide continuous information of altitude and slope, with added-value for:
 - The global methodology presented
 - The local knowledge of the river while studying a specific site

CONCLUSION

- -SWOT: a new technology with interesting perspectives available in 2021
- Innovative data benefiting to the knowledge of water resources in scarce data areas
- Partnership between organizations and companies operating in complementary fields:

L'énergie au cœur des territoires

Merci de votre attention! Thank you for your attention!

cnr.tm.fr

